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Scaling a set of intersecting reciprocal-lattice planes. By J. Kraut,*, Department of Biochemisiry,
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In the course of a current investigation of crystalline
proteins very low-order three-dimensional intensity data
were collected using the Buerger precession camera. This
was done by taking nine different zero-level reciprocal-
lattice planes which did not all intersect in a common
row of reflections. For this reason, and since the number
of moderately strong reflections in the most populous
intersection did not exceed five, it seemed desirable to
place all of the intensities on the same scale by a some-
what more systematic procedure than those which may
come immediately to mind. At least such a method would
have the advantage of producing the same results in the
hands of different crystallographers. The procedure
finally adopted may be of some interest to crystallo-
graphers in general and is therefore described here
separately.

Begin by considering the ith and jth out of the total
of n reciprocal-lattice planes, the intensities of the reflec-
tions in each being on an arbitrary scale which varies
from plane to plane. Assume that one has computed the
ratio of intensities for each pair of reflections common to
the two planes, and has then averaged these ratios.
Define 7y as the average ratio so obtained over all the
reflections in the intersection, that is
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In general 74 is not equal to r5t.

Now denote the scaling constants being sought by k;.
In the absence of errors of measurement one would have
simply ki/k; = ry. But in practice the best that can be
achieved is to obtain a set of k; which minimizes the
deviations of the ki/ks from the experimentally estimated
744, The rest of this communication is devoted to demon-
strating that such a set of k; can be found by taking
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for which, of course, k, = 1, i.e. all the other planes
are being put on the same scale as the nth.

Instead of dealing directly with the quantities r¢y; and
k; we choose rather to consider their logarithms, greatly
simplifying the problem at hand. The function to be
minimized, then, is
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Note that if, as is usual, r;; and hence ki/k; do not differ
much from unity this is practically the customary sum
of the squares of deviations.

For brevity, we introduce the two new symbols
l; = log k; and ai; = log ri; and rewrite (3) as
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Taking partial derivatives with respect to the I; and
equating to zero, one obtains
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where by; = (ay—ay)/2 has been introduced. By surnming
both sides of all # such equations it is seen that they are
linearly dependent. It is permissible therefore to assign
the value of zero to I, (i.e. to take k, = 1) and to solve
the first n—1 equations for the n—1 remaining /;. This
set of equations may be written in matrix notation
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or more briefly as
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Here B; has been written for X by. By inspection one
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finde that the inverse of matrix M is
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that is, the n—1 by n—1 matrix with 2/n on the diagonal
and 1/n elsewhere. The solution of (6’) is therefore
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Upon writing out in full the expression for any s and
n
using the fact that Y B; = 0, it is found that
j=1
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which may be converted, upon taking antilogarithms,
into equation (2) as desired.



